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ABSTRACT

This paper focuses on the problem of change detection through
a Wireless Sensor Network (WSN) whose nodes report only binary
decisions (on the presence/absence of a certain event to be
monitored), due to bandwidth/energy constraints. The resulting
problem can be modelled as testing the equality of samples drawn
from independent Bernoulli probability mass functions, when the
bit probabilities under both hypotheses are not known. Both One-
Sided (OS) and Two-Sided (TS) tests are considered, with reference
to: (i) identical bit probability (a homogeneous scenario), (ii) different
per-sensor bit probabilities (a non-homogeneous scenario) and (iii)
regions with identical bit probability (a block-homogeneous scenario)
for the observed samples. The goal is to provide a systematic
framework collecting a plethora of viable detectors (designed via
theoretically founded criteria) which can be used for each instance
of the problem. Finally, verification of the derived detectors in two
relevant WSN-related problems is provided to show the appeal of the
proposed framework.
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1. Introduction

Hypothesis testing fromBernoulli samples1 is of paramount importance in severalWireless
Sensor Networks (WSNs) applications (Niu and Varshney 2008; Ciuonzo et al. 2013;
Ciuonzo and Salvo Rossi 2014; Ciuonzo, De Maio, and Salvo Rossi 2015). One relevant
example is theDecentralized Change Detection (DCD) problem (He, Ben-David, and Tong
2006), i.e. a binary hypothesis test where a Fusion Centre (FC) is employed to detect a
triggering event, namely a change in a PhenomenonOf Interest (POI, e.g. a target, a source)
between consecutive discrete-time instants, based on binary decisions from a WSN (e.g.
presence/absence of the POI being monitored (Varshney 1996)).

The design of practical fusion rules for this problem has one of its main drivers in
resource-limited (bandwidth, energy, computation) WSNs, i.e. a major player in the
emerging Internet of Things (IoT) paradigm. Relevant applications include anomaly
detection, environmental change monitoring and uncooperative target intent inference.
The use of WSNs is mainly motivated by the (spatial) diversity they can offer, whose
effective data processing may translate into increased robustness of the system. To the best
of our knowledge, although many works have dealt with DCD (Patwari, Hero, and Sadler
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2003; He, Ben-David, and Tong 2006; Banerjee and Veeravalli 2015; Faivishevsky 2016),
none of them has provided a comprehensive study of fusion rules design, capitalizing on
severely constrained WSNs and based on composite hypothesis testing tools, so as to be
non-parametric but theoretically grounded.

In Patwari,Hero, and Sadler (2003), a CUSUMtest for hierarchical distributed detection
based on censoring sensors is proposed. Unfortunately, full measurement reporting is
assumed and, equally important, the PDF of the pre/post-change is assumed to be known.
In Banerjee andVeeravalli (2015), DCD is considered andminimax solutions are proposed
therein. The approach both allows for controlling the cost of sensors’ observations taken
and the communication cost between the sensors and the FC. Unfortunately, again the
PDF of the pre/post-change is assumed to be known. Finally, in Faivishevsky (2016), DCD
is (partially) explored with application to IoT, based on a per-sensor information-theoretic
multivariate CDmethod originating from K-nearest neighbour estimation. The proposed
method is favourably tested on both simulated an real data; however, the proposed fusion
technique requires availability of full-precision statistics at the FC.

The closest work to ours is represented byHe, Ben-David, and Tong (2006), whereDCD
via one-bit decisions is considered only under Two-Sided (TS) testing. A non-parametric
DCD framework is there developed, withmany detection/estimation algorithms developed
based on the Vapnik–Chervonenkis theory. Unfortunately, though intuitive, the design of
the considered rules has no theoretical motivation.

The aim of this work is threefold:

• providing a detailed overview of the possible alternatives which can be tackled for the
three composite hypothesis tests later specified in Equations (1), (2) and (3), since
the optimum Log-Likelihood Ratio (LLR) cannot be implemented, due to presence of
unknown parameters (Kay 1998);

• investigating the existence of the Uniformly Most Powerful (UMP) test and pointing
out that it does not exist in all the cases considered;

• deriving the Generalized Likelihood Ratio Test (GLRT), the Rao Test, the Wald Test
and the Locally Most (Mean) Powerful Test (LM(M)PT) as viable decision strategies
(investigating possible coincidence and/or statistical equivalence).

In many relevant cases, the sensor bit probability is linked to the detection rate of a POI
to be revealed/monitored, and a change can be modelled as a (positive/negative) shift of
the bit probability (Ciuonzo, Salvo Rossi, andWillett 2017). In other cases, the change can
be related to an abrupt increase/decrease of the concentration of a certain environmental
property (e.g. temperature, received power, (Ciuonzo and Salvo Rossi 2017)). Hence, for
sake of completeness, we will focus on both One-Sided (OS) and Two-Sided (TS) testing
(Kay 1998). Additionally, we will analyse three different scenarios, shown in Figure 1, as
for the change relationship with the spatial dimension: (i) Homogeneous (H), (ii) Non-
Homogeneous (NH) and (iii) Block-Homogeneous (BH).

It is worthmentioning that other practical impairments affectingWSNs, such as delayed
and/or missing measurements, are not considered in this work. Possible frameworks for
including suchphenomena intoWSNdesign are found inBasin, Shi, andCalderon-Alvarez
(2010) and Caballero-Águila, Hermoso-Carazo, and Linares-Pérez (2015).

The rest of the manuscript is organized as follows: the systemmodel and corresponding
problem formulation are presented in Section 2; in Section 3, we derive and discuss the
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main results, while numerical results to assess the DECHADE framework are provided
in Section 4. Finally, concluding remarks and sparks for future research are given in
Section 5.

2. Systemmodel

We consider a WSN with K sensors monitoring a POI and reporting decisions to a FC for
DCD and arranged in a star topology.2 The null (resp. alternative) hypothesis H0 (resp.
H1) represents the absence of change (resp. an occurred change) of the POI. We denote
yk[i] the local decision by the kth sensor at the ith discrete time, which (under Hj) is
characterized by the bit probability P(yk[i] = 1|Hj).

The WSN model is entirely specified via the joint multivariate PMF under Hj, denoted
P( y[i], y[i + 1] | Hj), where y[ℓ] !

[
y1[ℓ] · · · yK [ℓ]

]T collects all data at the ℓth discrete
time. For simplicity, we assume conditionally independent observations in both space and
time, i.e. P( y[i], y[i + 1]|Hj) = ∏K

k=1
{
P(yk[i]|Hj) P(yk[i + 1]|Hj)

}
. More specifically,

when H0 holds (i.e. no change), the kth sensor is characterized by the same bit probability
at both ith and (i + 1)th discrete times, which is denoted πk ! P

(
yk[i] = 1|H0

)
=

P(yk[i + 1] = 1|H0). On the other hand, when H1 holds (i.e. a change occurs), the kth
sensor is characterized by two different bit probabilities denoted πk ! P

(
yk[i] = 1|H1

)

and ϕk ! P
(
yk[i + 1] = 1|H1

)
, before and after the change, respectively. In this work,

aiming at designing non-parametric fusion rules, we assume that both πk and ϕk are
unknown and deterministic parameters (Kay 1998).

The three problems corresponding to the scenarios introduced in Section 1 are
{

H0 : yk[i] ∼ B(π), yk[i + 1] ∼ B(π),
H1 : yk[i] ∼ B(π), yk[i + 1] ∼ B(ϕ),

k ∈ {1, . . .K} (1)

in the case of a H scenario, and
{

H0 : yk[i] ∼ B(πk), yk[i + 1] ∼ B(πk),
H1 : yk[i] ∼ B(πk), yk[i + 1] ∼ B(ϕk),

k ∈ {1, . . .K} (2)

in the case of a NH scenario. Finally, in the case of a BH scenario, the WSN is subdivided
in M spatially homogeneous regions Rm (m = 1, . . .M) and the Km sensors within each
regionRm are associated to the pair (πm,ϕm). In other terms, sensors withinRm are solely
characterized by πm when H0 holds, whereas when H1 is in force are characterized by πm
and ϕm before and after the change, respectively. The hypothesis test for a BH scenario is
then:

{
H0 : yn[i] ∼ B(πm), yn[i + 1] ∼ B(πm),
H1 : yn[i] ∼ B(πm), yn[i + 1] ∼ B(ϕm),

n ∈ Rm, m ∈ {1, . . .M} (3)

Henceforth, the PMF of the decisions when H0 (resp. H1) holds will be also denoted
P0( y[i], y[i+1] ; ·) (resp.P1( y[i], y[i+1] ; ·)) so as tounderline the unknownparameters.
Furthermore, we remark that the hypothesis test in a H scenario can be restated in terms
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of relevant signal parameter $ ! (ϕ − π), as follows:

(TS)

{
H0 : π , $ = $0

H1 : π , $ ̸= $0
, (OS)

{
H0 : π , $ = $0

H1 : π , $ > $0
, (4)

where$0 ! 0. A similar formulation holds for aNH (resp. BH) scenario when considering
π !

[
π1 · · · πK

]T (resp. π !
[
π1 · · · πM

]T ) as the nuisance parameter vector and " ![
(ϕ1 − π1) · · · (ϕK − πK )

]T (resp. " !
[
(ϕ1 − π1) · · · (ϕM − πM)

]T ) as the relevant
signal parameter vector. Accordingly, for TS testing, H1 corresponds to " ̸= 0K (resp.
" ̸= 0M), whereas H0 implies " = 0K (resp. " = 0M); while, for OS testing, H1
corresponds to the (generalized) inequality" ≥ .0K (resp." ≥ .0M), whereasH0 implies
" = 0K (resp. " = 0M). Such (equivalent) formulation allows to separate naturally the
relevant signal parameters (viz. $ and " for H and NH/BH scenarios, respectively) from
the nuisance one (viz. π and π for H and NH/BH scenarios, respectively) and will be
frequently exploited in the following.

The goal of a DCD system design is a decision statistics in the form%( y[i], y[i+ 1]) to
be compared with a threshold γfc for declaringH1 (resp.H0) if the statistics is larger (resp.
smaller). System performance is evaluated in terms of false-alarm probability (PF,fc !
Pr{% > γfc|H0}) and detection probability (PD,fc ! Pr{% > γfc|H1}).

3. Taxonomy of decision rules

In this section, we develop all the explicit forms of the considered rules for the DCD under
investigation. A complete summary of the decision statistics withinDECHADE is reported
in Table 1 for readers’ convenience.3 Each one of them represents a suitable alternative (to
the unfeasible LLR) for implementing a practical test aiming at DCD.

3.1. LLR and UMP test

We start from investigating the LLR (and UMP test existence) in the simple H scenario.
Indeed, according to Neyman–Pearson criterion, the latter is derived as (Kay 1998):

%LLR ! ln
[
P1( y[i], y[i + 1] ; π ,ϕ)

P0( y[i], y[i + 1] ; π)

]

=
K∑

k=1

{
ln
[
P(yk[i]; π)

P(yk[i]; π)

]
+ ln

[
P1(yk[i + 1]; ϕ)

P0(yk[i + 1]; π)

]}

= c[i + 1] ln
[
ϕ/π

]
+ (K − c[i + 1]) ln

[
(1 − ϕ)/(1 − π)

]
(5)

where c[ℓ] ! ∑K
k=1 yk[ℓ] (i.e. the counting sum at ℓth time instant) and can be shown to

be statistically equivalent to %LLR ∝ ln
[

ϕ (1−π)
π(1−ϕ)

]
c[i + 1]. The last expression apparently

depends on the unknown pair (π ,ϕ). We now analyse TS and OS testing, separately. First,
it is easily understood that theUMP test does not exist when testing a TS alternative, based
on the log term (since it can assume either positive or negative values depending on ϕ and
π). Secondly, in OS testing, the condition ϕ > π automatically implies positivity of log
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term, that is%LLR ∝ c[i+1]. Nonetheless, the counting rule at (i+1)th time instant is not
UMP in the considered DCD setup (as opposed to the simpler decision fusion problem,
see e.g. Varshney (1996)), as any error-vanishing threshold γfc for c[i + 1] would (even in
asymptotic sense) depend on the unknown π .

Similarly, in the NH case, the LLR has the following closed-form:

%LLR ! ln
[
P1( y[i], y[i + 1] ; π ,ϕ) / P0( y[i], y[i + 1] ; π)

]
(6)

=
K∑

k=1

{
yk[i + 1] ln

[
ϕk/πk

]
+ (1 − yk[i + 1]) ln

[
(1 − ϕk)/(1 − πk)

]}
. (7)

Clearly, the LLR cannot be evaluated since the pairs (πk,ϕk) are unknown and statistically
equivalent tests cannot be drawn. Then, it is apparent that for both TS and OS testing
the UMP test does not exist. For such a reason, evaluation and comparison of viable
decision rules is relevant and will be the object of the remainder of this manuscript. Indeed,
analogous considerations as the NH scenario hold for the BH case, whose LLR is similarly
expressed as

%LLR ! ln
[
P1( y[i], y[i + 1] ; π ,ϕ) / P0( y[i], y[i + 1] ; π)

]
(8)

=
M∑

m=1

{
c̄m[i + 1] ln

[
ϕm/πm

]
+ (Km − c̄m[i + 1]) ln

[
(1 − ϕm)/(1 − πm)

]}
, (9)

where c̄m[ℓ] ! ∑
k∈Rm

yk[ℓ], ℓ ∈ {i, i+1}, i.e. the counting sum of all the sensors belonging
to Rm, depending on the region-specific pair (πm,ϕm).

3.2. GLRT

The GLRT is widely used to devise decision rules in composite hypothesis testing (Kay
1998). In the present DCD problem, the GLR for the H scenario is given by

%G ! ln
[
max(π ,ϕ)P1( y[i], y[i + 1]; π ,ϕ)

max(π)P0( y[i], y[i + 1]; π)

]
, (10)

and assumes the explicit expression (after simple manipulations):

%G =
{
K
{
DKL(B(π̂1)||B(π̂0)) + DKL(B(̂ϕ+)||B(π̂0))

}
(OS)

K
{
DKL(B(π̂1)||B(π̂0)) + DKL(B(̂ϕ)||B(π̂0))

}
(TS)

; (11)

where π̂0 ! (c[i] + c[i + 1]) / 2K (i.e. the ML estimate of π under H0), π̂1 ! c[i]/K (i.e.
the ML estimate of π under H1), ϕ̂ ! c[i + 1]/K (i.e. the ML estimate of ϕ in TS testing)
and ϕ̂+ ! max{π̂1, ϕ̂} (the ML estimate of ϕ under OS constraint).

It is worth mentioning that an intuitive generalization of the well-known test proposed
in Hoeffding (1965) arises in TS testing, i.e. a threshold test based on the sample KL
divergences between the (estimated) Bernoulli PMFs under the change hypothesis (i.e.
B(π̂1) andB(ϕ̂)) and the (estimated) Bernoulli PMFunder no change assumption (B(π̂0)).
Similarly, in OS testing, a restricted version for ϕ̂ > π̂1 is obtained.
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Secondly, in the NH scenario, the GLR requires the following multi-parameter maxi-
mization:

%G !
K∑

k=1
ln
[
max(πk ,ϕk)P1(yk[i], yk[i + 1]; πk,ϕk)

max(πk)P0(yk[i], yk[i + 1]; πk)

]
. (12)

It is not difficult to show that the ML estimate of πk under H0 equals π̂k,0 ! (yk[i] +
yk[i + 1])/2, whereas the ML estimate of the pair (πk,ϕk) under H1 is

(
π̂k,1, ϕ̂k

)
!(

yk[i], yk[i] ∨ yk[i + 1]
)
(resp.

(
π̂k,1, ϕ̂k

)
! (yk[i], yk[i + 1]) for OS (resp. TS) testing.

Substitution into (12) leads to

%G = 2 · ln 2 ·
K∑

k=1

{
yk[i] ⊕ yk[i + 1]

}
, (13)

in both testing cases.
Finally, in the BH case, a similar multi-parameter optimization is required as the H

scenario, exploiting the block assumptions of this scenario, that is:

%G !
M∑

m=1
ln
[
max(πm,ϕm)P1(c̄m[i], c̄m[i + 1]; πm,ϕm)

max(πm)P0(c̄m[i], c̄m[i + 1]; πm)

]
. (14)

In this case, the GLR assumes the explicit expression:

%G =
{
K
∑M

m=1 ρm
{
DKL(B(π̂m,1)||B(π̂m,0)) + DKL(B

(
ϕ̂+
m
)
||B(π̂m,0))

}
(OS)

K
∑M

m=1 ρm
{
DKL(B(π̂m,1)||B(π̂m,0)) + DKL(B(ϕ̂m)||B(π̂m,1))

}
(TS)

;
(15)

wherewe have employed the definitionsρm ! (Km/K) (the fraction of sensorswithinRm),
π̂m,0 ! (c̄m[i]+ c̄m[i+1]) / 2Km (theML estimate of πm underH0), π̂m.1 ! c̄m[i]/Km (the
ML estimate of πm under H1), ϕ̂m ! c̄m[i + 1]/Km (the ML estimate of ϕm in TS testing)
and ϕ̂+

m ! max{π̂m,1, ϕ̂m} (the ML estimate of ϕm under OS constraint). Interestingly
in BH case, the result in Equation (15) merely corresponds to the sum of GLR statistics
pertaining to all the regions Rm,m = 1, . . . ,M, modelling the monitored area.

3.3. Rao test

The Rao test is another well-known test widely applied in TS testing problems, having the
same asymptotic performance as the GLRT (Kay 1998). In theH scenario, the Rao (score)
test is evaluated as (Cressie 1978)

%R !
(

∂ ln
[
P1( y[i], y[i + 1]; $,π)

]

∂$

)2
∣∣∣∣∣∣
($0,π̂0)

[
I($0, π̂0)

−1]
$,$ = 2K

(
ϕ̂ − π̂0

)2

π̂0(1 − π̂0)

(16)

where θ !
[
$ π

]T , I($,π) ! E
{

∂P1(y[i],y[i+1]; θ)
∂θ

∂P1(y[i],y[i+1]; θ)

∂θT

}
denotes the Fisher

Information Matrix (FIM) and
[
I($,π)−1]

$,$ indicates the scalar obtained by selecting
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from the FIM inverse only the element corresponding to the parameter $. Similarly, the
Rao test in the NH scenario is evaluated as

%R !
K∑

k=1

(
∂ ln

[
P1(yk[i], yk[i + 1]; $k,πk)

]

∂$k

)2
∣∣∣∣∣∣
($0,π̂k,0)

[
Ik($0, π̂k,0)

−1]
$k ,$k

=
K∑

k=1
2

[
yk[i + 1] − (yk[i + 1] + yk[i])/2

]2

(yk[i + 1] + yk[i])/2
[
1 − (yk[i + 1] + yk[i])/2

] = 2
K∑

k=1

{
yk[i] ⊕ yk[i + 1]

}

(17)

where θk !
[
$k πk

]T , Ik($k,πk) ! E
{

∂P1(yk[i], yk[i+1]; θk)
∂θk

∂P1(yk[i], yk[i+1]; θk)

∂θTk

}
and the

simplification in the first line of Equation (17) arises from exploiting independence of
sensor decisions. Finally, with reference to the BH scenario, we obtain:

%R !
M∑

m=1

∂ ln
[
P1(c̄m[i], c̄m[i + 1]; $m,πm)

]

∂$m

∣∣∣∣∣

2

($0,π̂m,0)

[
I−1
m ($0, π̂m,0)

]
$m,$m

(18)

= 2K
M∑

m=1

ρm
(
ϕ̂m − π̂m,0

)2

π̂m,0(1 − π̂m,0)
(19)

where θm !
[
$m πm

]T and Im($m,πm) ! E
{

∂P1(c̄m[i], c̄m[i+1]; θm)
∂θm

∂P1(c̄m[i], c̄m[i+1]; θm)

∂θTm

}
.

3.4. LocallyMost (Mean) Powerful Test (LM(M)PT)

Since we are also considering OS testing, a LMPT is appropriate in this context (Kay 1998).
Indeed, for H scenario and OS testing, the LMPT is obtained as (Suissa and Shuster 1985).

%L ! ∂ ln
[
P1( y[i], y[i + 1]; $,π)

]

∂$

∣∣∣∣∣
($0,π̂0)

√[
I−1($0, π̂0)

]
$,$ =

√
2K

(
ϕ̂ − π̂0

)
√

π̂0(1 − π̂0)

(20)

On the other hand, in the NH scenario, it can be shown that a LMPT cannot be ob-
tained (Kay 1998). Indeed, the first-order Taylor series of the LLR depends on the (un-
known) differences ($k − $0) = (ϕk − πk), which weight the gradient (score) vector
∂ ln

[
P1( y[i], y[i + 1]; ",π)

]
/∂". Therefore, to overcome this issue, we resort to a mod-

ified multi-dimensional version of the LMPT, which maximizes the mean curvature of the
power function in the neighbourhood of" = 0K , that is (Gupta and Vermeire 1986; King
and Wu 1997)

%L !
K∑

k=1

∂ ln
[
P1(yk[i], yk[i + 1]; $k,πk)

]

∂$k

∣∣∣∣∣
($0,π̂k,0)

√[
I−1
k ($0, π̂k,0)

]

$k ,$k
(21)

=
K∑

k=1

√
2
{
yk[i + 1] − yk[i]

}
. (22)
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The statistic in Equation (21) is usually referred4 to be Locally Most Mean Powerful
(LMMP). Remarkably, the LMMP statistic in NH scenario is equivalent to the test based
on the statistic ϕ̂ − π̂1, made of the same ML estimates as the H scenario.

Finally, in the BH scenario, by exploiting problem separability among the regions Rm,
m = 1, . . .M, we obtain the following explicit LMMP statistic:

%L !
M∑

m=1

∂ ln
[
P1(c̄m[i], c̄m[i + 1]; $m,πm)

]

∂$m

∣∣∣∣∣
($0,π̂m,0)

√[
I−1
m ($0, π̂m,0)

]
$m,$m

(23)

=
√
2K

M∑

m=1

√
ρm

(
ϕ̂m − π̂m,0

)
√

π̂m,0(1 − π̂m,0)
. (24)

3.5. Wald Test

The Wald Test is another well-known decision procedure employed in TS testing (Kay
1998). It can be shown that, in H scenario, it equals to (Cressie 1978)

%W !
(
$̂ − $0

)2
/
[
I−1

(
$̂, π̂1

)]

$,$
= K

(
ϕ̂ − π̂1

)2
/
[
ϕ̂(1 − ϕ̂) + π̂1(1 − π̂1)

]
,

(25)

where $̂ ! (ϕ̂ − π̂1), i.e. the ML estimate of the probability difference under H1. The OS
counterpart of Wald statistic is instead obtained by replacing $̂ with $̂+ ! max{$̂, 0},
thus leading to %W =

{[
K
(
ϕ̂ − π̂1

)2]
/
[
ϕ̂(1 − ϕ̂) + π̂1(1 − π̂1)

]}
u(ϕ̂ − π̂1). On the

other hand, we remark that in a NH scenario the Wald test cannot be constructed. Indeed,
in the latter case, the implicit expression (exploiting the mutual independence assumption
among the sensors) is:

%W !
K∑

k=1

(
$̂k − $0

)2
/
[
I−1
k

(
$̂k, π̂k,1

)]

$k ,$k
. (26)

Unfortunately, in TS testing the reciprocal of the relevant FIM block
1/
[
I−1
k

(
$̂k, π̂k,1

)]

$k ,$k
= 1/

[
yk[i + 1](1 − yk[i + 1]) + yk[i](1 − yk[i])

]
always di-

verges, thusmaking the statistic in Equation (26) not applicable. A similar reason precludes
the application of Wald statistic in NH scenario when testing a OS alternative.

Finally, in the BH scenario, the Wald statistic assumes the explicit expression:

%W !
M∑

m=1

(
$̂m − $0

)2

[
I−1
m

(
$̂m, π̂m,1

)]

$m,$m

= K
M∑

m=1
ρm

(
ϕ̂m − π̂m,1

)2

ϕ̂m(1 − ϕ̂m) + π̂m,1(1 − π̂m,1)
.

(27)

As for GLR, LMMP andRao statistics, the result for BH case in Equation (27)merely corre-
sponds to the sum ofWald statistics pertaining to all the regionsRm,m = 1, . . . ,M, mod-
elling the surveillance area. Finally, in OS testing, the appropriateWald statistic is obtained



538 D. CIUONZO AND P. SALVO ROSSI

Table 1. Rules comparison: H/BH/NH scenarios and OS/TS testing are considered.

GLR Rao L(M)MP Wald

OS/H Dπ + Dϕ+ χ2
0

v
(
π̂0
) χ0√

v
(
π̂0
)

$̂2

v
(
ϕ̂
)
+v
(
π̂1
) u
(
$̂
)

TS/H Dπ + Dϕ χ2
0

v
(
π̂0
) X $̂2

v
(
ϕ̂
)
+v
(
π̂1
)

OS/BH
∑M

m=1 Dπ
m + Dϕ+

m *M
m=1

ρm χ2
m,0

v
(
π̂m,0

)
∑M

m=1

√
ρm χm,0√
v
(
π̂m,0

)
∑M

m=1
ρm $̂2

m
v
(
ϕ̂m
)
+v
(
π̂m,1

) u
(
$̂m

)

TS/BH
∑M

m=1 Dπ
m + Dϕ

m *M
m=1

ρm χ2
m,0

v
(
π̂m,0

) X
∑M

m=1
ρm $̂2

m
v
(
ϕ̂m
)
+v
(
π̂m,1

)

OS/NH *K
k=1 zk,i *K

k=1zk,i $̂ X

TS/NH *K
k=1 zk,i *K

k=1zk,i X X

by replacing $̂m with $̂m,+ ! max{$̂m, 0}, thus leading to %W = K
∑M

m=1 ρm{(ϕ̂m −
π̂m,1)

2/[ϕ̂m(1 − ϕ̂m) + π̂m,1(1 − π̂m,1)]} u(ϕ̂m − π̂m,1).

4. Simulation results

In this section, we investigate the fusion rules within DECHADE framework by focusing
on twoDCDproblems of interest inWSNs: (i) a change of POI position and (ii) an increase
of emitted POI power, as detailed in Figure 2.

We assume that the sensors monitor a POI within a 2-D surveillance area A ! [0, 1]2
(the nodes are displaced in a random fashion over A, for simplicity) having an isotropic,
randomly fluctuating, partially specified spatial signature with distance-dependent path-
loss. More specifically, the kth sensor measurement at the ℓth time instant (mk[ℓ] ∈ R)
adheres to the model mk[ℓ] = ξk[ℓ] g(xT [ℓ], xk) + wk[ℓ], where the fading coefficient
ξk[ℓ] ∼ N (0, θ[ℓ]) models fluctuations in the received signal strength of the (same) POI
signature, having an unknown deterministic transmitted power θ[ℓ] at ℓth instant, which
well suits to the case of a realistic POI. Also, xT [ℓ] ∈ R2 denotes the unknown POI
position at the ℓth time instant, while xk ∈ R2 denotes the known kth sensor position,
with the pair (xT [ℓ], xk) uniquely determining the value of g(xT [ℓ], xk), denoting the
Amplitude Attenuation Function (AAF); finally, wk[ℓ] ∼ N (0, σ 2

w) denotes the sensing
noise (without loss of generality, we set here σ 2

w = 1). Hence, in view of these assumptions,
mk[ℓ] ∼ N (0, θ[ℓ] g2(xT [ℓ], xk) + σ 2

w) holds.
Accordingly, each sensor has been set to reveal the POI based on its local UMP test,

corresponding to an energy test reporting yk[ℓ] = 1 (resp. yk[ℓ] = 0) when m2
k[ℓ] > γk

(resp. m2
k[ℓ] ≤ γk) (Guerriero, Svensson, and Willett 2010; Ciuonzo and Salvo Rossi

2017). Consequently, the bit probability of kth sensor is Pk = Pr{m2
k ≥ γk} = 2Q(√

γk/{σ 2
w + σ 2

s g2(xT , xk)}
)
and the threshold γk is chosen to ensure 2Q

(√
γk/σ 2

w

)
=

P̄0,k (here set to P̄0,k = 10−2), so as to constrain the number of sensor false reports when
there is no POI to monitor within the area. Here a power-law AAF is chosen g(xT , xk) !
1 /
√
1 +

(∥xT − xk∥ / η
)α , where the POI extent and decay exponent are set as η = 0.2

and α = 4, respectively. For convenience, we define the POI Signal-To-Noise Ratio (SNR)
at ℓth time instant as SNR[ℓ] ! 10 log10 (θ[ℓ]/σ 2

w).



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 539

Figure 2.WSN with K = 250 sensors randomly displaced within A. Setup (a): the POI position change
is modelled as xT [i] = [0.9 0.9]T , xT [i + 1] = [0.1 0.1]T and SNR[i] = SNR[i + 1] = 10 dB. Setup
(b): the emitted POI power change is modelled as xT [i] = xT [i + 1] = [0.3 0.3]T , SNR[i] = 0 dB and
SNR[i + 1] = 10 dB.
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Figure 3. PD,fc vs. PF,fc for all the considered rules; for scenario (a) only TS rules (or TS counterparts)
of considered rules are considered, whereas for (b) OS rules (or OS-counterparts) have been employed
(except for Rao statistic).
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Scenario (a) – From inspection of Figure 3(a), it can be concluded that rules designed
under BH scenario are the most appealing, with Rao test performing best. This is mainly
due to the implicit TS nature of the considered problem (i.e. a change of position may
reflect in a either an increase or decrease of the bit/detection probability at each sensor
in the WSN). Also, GLR/Rao tests under NH scenario perform satisfactorily, suffering,
however, a non-negligible performance loss. Finally, poor performance of H rules in this
scenario are due to the fact a change in position does not reflect a global average change
of bit probability in the WSN, and this change can be appreciated only if region-based
surveillance is performed (i.e. the BH assumption).

Scenario (b) – By looking at Figure 3(b), it can be inferred that all the considered
rules within DECHADE framework perform satisfactorily, Rao test in H/BH scenarios
performing theworst, as the latter is a rule intrinsically designed forTS testing and therefore
does not match with a power increase (which reflects in an increase of bit/detection
probability at all the sensors). On the other hand, rules specifically designed for OS testing
(or, equivalently, their OS counterparts, e.g. GLR andWald) reach high performance. The
best performance are achieved by the NH group (LMMP and GLR), followed by the BH
and H groups (LMMP, GLR and Wald).

5. Conclusions and future directions

In this paper, we provided an overview of the classic problem of testing the change in
samples drawn from independent Bernoulli PMFs, when the bit probabilities are not
known, with application to WSNs. Both OS and TS testing were considered, as well as
spatially H, NH and BH scenarios, in our analysis. Since UMP test was confirmed not to
exist in all the cases considered, we derived GLRT, Rao test,Wald test and LM(M)PTwhile
underlining their possible coincidence and/or statistical equivalences, so as to provide
a framework of viable rules for DCD, here denoted as DECHADE. Finally, simulation
results pertaining to two relevant DCD problems in WSNs were provided, so as to
compare the considered rules, underlining the appeal of BH-originated rules under both
cases. Asynchronous DCD is a natural extension of the proposed framework and will be
considered for future work.

Notes

1. Notation – Lower-case bold letters denote vectors, with an being the nth element of a; upper-
case calligraphic letters, e.g. A, denote finite sets; E{·}, ( · )T ,

∨
and ⊕ denote expectation,

transpose, logical OR and XOR, respectively; P( · ) denotes probability mass function (PMF),
while P( · | · ) is the corresponding conditional counterpart; B(p) denotes a Bernoulli PMF
with success probability p; N (µ, σ 2) denotes a Gaussian PDF with mean µ and variance σ 2;
Q( · ) denotes the complementary CDF of a standard normal random variable, i.e. N (0, 1);
u( · ) denotes the Heaviside unit-step function;DKL( · || · ) denotes the Kullback-Leibler (KL)
divergence between distributions (Cover and Thomas 2006). The notation ˆ( · ) is denoted to
indicate the Maximum Likelihood (ML) estimate of the unknown parameter ( · ). Also, the
symbol∼means “distributed as” and “∝” is used to underline statistical equivalence between
decision statistics. Finally, the notation δ1 ≥ .δ2 means that each element of δ1 is greater or
equal than the corresponding element of δ2, and at least one element of δ1 is strictly greater
than the corresponding element of δ2.
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2. All sensors transmit directly to the FC (which is assumedwithin their communication range).
The frameworkmay be extended to other network topologies (e.g. tandem, hierarchical) with
fusion rules to be applied to the aggregation nodes. This aspect is beyond the scope of the
paper.

3. The following short-hand notation has been employed: Dπ ! DKL(B(π̂1)||B(π̂0)),
Dϕ ! DKL(B(ϕ̂)||B(π̂0)), Dϕ+ ! DKL(B(ϕ̂+)||B(π̂0)), Dπ

m ! DKL(B(π̂m,1)||B(π̂m,0)),
Dϕ

m ! DKL(B(ϕ̂m)||B(π̂m,0)), Dϕ+
m ! DKL(B(ϕ̂+

m)||B(π̂m,0)), zk,i ! yk[i] ⊕ yk[i + 1],
χ0 ! (

ϕ̂ − π̂0
)
, χm,0 ! (

ϕ̂m − π̂m,0
)
and v(p) ! p(1 − p).

4. With a slight abuse of notationwewill use the symbol%L to denote both LMPT and LMMPT,
depending on the specific scenario.
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